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The development of a theory of kin selection has proceeded along two lines. Inclusive-
fitness models have implicitly assumed that selection is weak, whereas exact-population
genetic models place no constraints on the strength of selection. Several examples are
presented showing that qualitatively new behavior has emerged from the exact models.
However, for many problems, the exact-population and inclusive-fitness models often
yield identical results. Unfortunately, it is not possible to identify a priori those problems
that can he handled sufficiently hy the simpler inchisive-fitness models. The initial
increase of cooperative behavior in a population of egoists involves difficulties similar
to the initial increase of altruism. Clustering of cooperatives produces dynamics for
the increase of cooperation that are formally similar to population models of inbreeding.
Here, an increase in the tendency to cluster is equivalent to increasing the ‘‘relation-
ship”’ among cooperatives, and therefore augments the chance for cooperation to

increase.
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INTRODUCTION

Itruistic behavior appears to be common among humans and other

specws of animals. Although the meamng of “‘altruism”’ may vary,
we first illustrate the phenomena with examples from several di-
verse animal groups, and later we present a precise definition that

forms the basis of our populatlon genetic models.
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Several bird species among the swifts, kingfishers, and bee eaters ex-
hibit cooperative breeding in large colonies (Emlen 1978). Studies of the
white-fronted bee eater (Merops bulockoides) show that more than 70% of
nests are tended by helpers. These helpers take part in nest excavation,
incubation and feeding and defending the young.

Perhaps the most extreme examples of cooperation and altruism are the
social insects. In many species of bees and ants, female workers forego
reproduction in order to raise the queen’s offspring. Honeybees will often
die upon stinging a perceived intruder. Such heroic acts extend to raising
young such that worker honeybees will metabolize their own tissue protein
to feed larvae when fed only sugar water (Wilson 1971).

To many, altruistic behavior of the sort just described seemed contrary
to the theory of natural selection. How could such sacrifice result from a
process favoring genotypes that leave large number of offspring? Haldane
(1955), Williams and Williams (1957), Hamilton (1964) and Maynard Smith
(1964) all recognized that individuals can transmit their genes to the next
generation by having their own offspring or by helping close relatives have
many offspring. Hamilton quantified these ideas in what has become known
as Hamilton’s rule,

Bbar > v. (1

This rule states that behavior directed from altruist to recipient will be fa-
vored by natural selection if the gain in fitness (B) experienced by the re-
cipients discounted by a coefficient of relatedness (bag), between altruist
and recipient, is greater than the loss in fitness (y) suffered by the altruists.
If bar is interpreted as the probability that the recipient contains an allele
identical to one in the altruist, equation (1) can be restated: if the behavior
causes relatives to produce Bbag more ‘‘altruist’ alleles, and altruists to
produce vy fewer “‘altruist’ alleles, the behavior will be favored by natural
selection if there is a net gain in “‘altruist’ alleles, for example, Bbar — v
> 0, which is simply equation (1).

The major qualitative inference from Hamilton’s rule is that altruistic
behavior is more likely to evolve among closely related individuals than
among distant relatives. This has been invoked to explain the unusual con-
centration of sociality among the insect Hymenoptera. The genetic system
of these insects is haplo—diploid. Females emerge from fertilized, diploid
eggs, whereas males are haploid and develop from unfertilized eggs. Sisters
in diploid species have a coefficient of relatedness of 3, whereas this quantity
1s 2 in haplo-diploid species. Multiple insemination, however, may lower
this figure substantially.

The appearance of sociality among diploid termite species might be
explained by similar phenomena, although this is still a matter of contention
(Crozier and Luykx 1985). In several species of termites, nearly 50% of the
genome occurs in translocations of the X chromosome (Lacy 1980). This
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makes it more likely for sisters to carry the same altruistic alleles, since they
all inherit the same X chromosome from their father.

Although Hamilton’s rule and the heuristic justification we have pro-
vided are intuitively attractive, we know that natural selection in general
does not simply maximize the number of copies of the ‘‘best’’ allele or even
the mean fitness of a population. To actually quantify the action of natural
selection, we need to take into account such things as Mendelian genetics
and differences in the fitness of alternative genotypes.

Two different approaches have been used in the development of pop-
ulation genetic models of kin selection. The inclusive fitness models (Char-
nov 1977; Charlesworth 1978; Wade 1979; Michod and Abugov 1980; Abugov
and Michod 1981) implicitly assume that selection is weak and, therefore,
genotype frequencies will remain in Hardy~Weinberg proportions after se-
lection. The exact population genetic models (Levitt 1975; Cavalli-Sforza
and Feldman 1978; Uyenoyama and Feldman 1981; Uyenoyama et al. 1981;
Toro et al. 1982; Matessi and Karlin 1984) can accommodate selection of
any intensity. The exact models are substantially more difficult to analyze
and have yielded results that are sometimes at odds with Hamilton’s rule.
This state of affairs has lead Maynard Smith (1983) to suggest that ‘‘the main
service that population geneticists can perform is to specify the circum-
stances in which inclusive fitness methods can safely be applied.”’

The theory of reciprocal altruism, originated by Trivers (1971), was
certainly eclipsed as an explanatory force for behavioral ecologists by the
theory of kin selection. This hiatus lasted about 10 years but has given way
to a new wave of activity connected with the evolution of cooperation. This
renewed focus of interest on reciprocal altruism derives from the application
of rational choice models to animal behavior by Axelrod and Hamilton
(1981). The framework for this is the continued prisoner’s dilemma game,
and does not include genetic contributions to the cooperation—noncooper-
ation dichotomy. There are, however, ways in which genetics might be in-
cluded in these models for the evolution of cooperation. Axelrod (1981)
suggested that clustering of cooperative individuals would increase the
chance of their invasion. If the dichotomy were genetic, this would be equiv-
alent to assortative mating (Eshel and Cavalli-Sforza 1982) or possibly some
form of inbreeding.

An alternative genetic framework would take one or more of the pa-
rameters in the prisoner’s dilemma model to be under genetic control,
namely, the payoffs or the discount rate. Then one might ask whether genes
that result in a higher (or lower) discount rate would be favored in evolution.
The analysis of such issues could involve integration of the approach we
use in this article in studying the evolution of parameters of kin selection,
with some of the ecological models of cooperation discussed by the other
authors in this volume.

In this article, we review published exact-population genetic models
and present a new model whose object is to determine if their predictions
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could have been anticipated from the simpler inclusive fitness models. Two
major conclusions follow from these examples. First, qualitatively new be-
havior is seen in the exact-population models that is not present in inclusive-
fitness models. The models differ in ways other than just their quantitative
predictions of allele frequencies (Grafen 1985). Second it is nearly impossible
to predict a priori which problems can be completely understood with in-
clusive-fitness models. We conclude that the development of exact models
of kin selection must be viewed as an important and necessary step for
progress in this field.

POPULATION GENETIC MODELS

Notation

We allow for n different alleles at a single locus. These alleles are denoted
A1, Az, . .., A,. The frequencies of these alleles in the population are p;,
D2, - . ., Pa. Lastly, we let genotype A;A; occur with frequency g;;.

Life Cycle

The organism reproduces at discrete intervals, in which there is random
mating and an infinite population size. The life cycle is given below.

Altruism random
Zygotes Viability Adl}lts —mating Z’ygotesl
8ij = Zpipj Selection 8gij 8ij X £ij

etc.

Initially, the zygotic genotypes are in Hardy—Weinberg equilibrium. How-
ever, after selection, the adult genotypes are not in Hardy—Weinberg pro-
portion and, hence, genotype frequencies must be specified in the exact
models so that the precise frequencies of all families can be computed. The
inclusive fitness models approximate adult genotype frequencies, g/;, with
their Hardy~Weinberg expectations.

Genotypes and Phenotypes

Hamilton’s original model assumes, implicitly, that genotypes are either al-
ways selfish or altruistic. Here, we allow genotype A;A; to be altruistic with
probability /;; where 0 < h; =< 1.

Fitness

Each genotype will have two independent components to its net fitness.
Fitness will be incremented by altruism received by the genotype and dec-
remented as a result of altruism performed by the genotype. This increment



Models of Kin Selection 227

will be equal to Bf;;, where f;; is the probability that genotype A;A; has an
altruistic relative (sister, brother, sib, etc.) and will be decremented by vh;;.
As pointed out by Cavalli-Sforza and Feldman (1978) there are two natural
ways in which fitness might be computed. The additive model sets the fitness
of genotype A;A;, w;;, proportional to

wyxl — yhi; + Bfy,
whereas the multiplicative model has
w1 — vyhy)(1 + BFy).

These formulations are not equivalent, and Hamilton’s rule is most consis-
tent with the additive formulation.

RESULTS

Abugov and Michod (1981) have shown that identical expressions are ob-
tained for allele frequency dynamics from Hamilton’s model and the inclu-
sive-fitness models. Thus, these two models can be considered equivalent
with respect to important predictions they might make.

Two basic types of questions have been addressed using the exact-
population genetic models of kin selection. The initial increase question asks
under what conditions a rare mutant allele, which affects altruism, will be
able to increase in frequency. Cavalli-Sforza and Feldman (1978), Uyen-
oyama and Feldman (1981) and Uyenoyama et al. (1981) drew attention to
polymorphic equilibria and to the importance of fixation on the altruistic
allele.

For the initial increase problems, Hamilton’s theory predicts that a rare
genotype that is always altruistic should increase in frequency in a selfish
population if (1) holds. When genotypes are altruistic to varying degrees,
equation (1) can be modified to: (hy2 — hy1)Bbar > 0. Cavalli-Sforza and
Feldman (1978) have shown that the multiplicative, exact-population-genetic
models yield initial increase conditions that are not simply expressible in
terms of relationship coefficients. Cavalli-Sforza and Feldman have also
shown that initial increase conditions for the additive model are more often
consistent with Hamilton’s theory.

The exact single locus models yield two types of polymorphic equilibria
(Uyenoyama and Feldman 1981; Uyenoyama et al. 1981). The viability anal-
ogous equilibrium is characterized by equilibrium allele frequencies that can
be determined by treating the A;;s as viabilities and using the standard results
from single locus viability models (Ewens 1979, chap 2). Equilibrium allele
frequencies for the structural equilibria are usually solutions to quadratic or
higher order polynomials and depend on the h;;s, 8 and . Only the viability
analogous equilibria can be extracted from the inclusive-fitness models. Re-
gardless of this similarity, the stability conditions for the viability analogous
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equilibria depend on the population genetic model used. For an inclusive-
fitness sib—sib model, Michod and Abugov (1980) show that viability anal-
ogous equilibrium for two alleles is stable when B/2 > v and Ay, > hyy, has.
The conditions for its stability from the exact-population genetic models are
more complicated (Uyenoyama and Feldman, 1981). In addition to the pre-
vious result from the inclusive-fitness model, the exact models also predict
stability in special cases of the viability analogous equilibrium when,

B/2 <~y and hi> > hyy, b2, (2a)
or
B/Z > Y and l’llz < h”, l’l22. (2b)

It should be noted that when conditions (2a) and (2b) hold, in addition to the
stable polymorphic equilibrium, there are states corresponding to fixation
of the A; or A, allele that are locally stable. Thus, it would seem that in a
monomorphic population, these polymorphic equilibria could never be
reached unless some stochastic process leads to the introduction of large
numbers of the alternative allele. We see below that this is not the only
possibility.

It is clear that exact-population genetic models predict different stability
conditions for the viability analogous equilibrium than do the inclusive-fit-
ness models and yield additional polymorphic equilibria. We next address
this very important question: at a theoretical level, do the additional com-
plications of the exact-population genetic model result in interesting biolog-
ical phenomena that could not have been predicted or anticipated from the
simpler inclusive-fitness models? Our answer is a resounding yes.

NEW PHENOMENA FROM THE EXACT POPULATION
GENETIC MODELS

Altruism With Inbreeding

It has been suggested (Hamilton, 1964) that inbreeding may facilitate the
evolution of altruism. Uyenoyama (1984) has examined a number of exact
models that incorporate regular systems of inbreeding such as selfing, par-
thenogenesis, and sibmating. Although her primary finding has been that
inbreeding does not always promote altruism, and indeed may actually make
it more difficult to evolve, she also shows that genetic polymorphisms are
possible with inbreeding. Nevertheless, we find that these polymorphic equi-
libria are all structural and thus, presumably, would not be present in the
analogous inclusive-fitness models. The exact-population genetic models
have thus lead to a qualitatively new result concerning the existence of
polymorphisms with inbreeding.



Models of Kin Selection 229

Parental Interference

The arguments presented previously to study the evolution of altruism can
be reversed to study the evolution of selfish behavior. Thus, for interactions
between full sibs, selfish behavior should evolve if B/2 < . Alexander (1974)
claimed that such selfish behavior among sibs could be prevented by parental
interference. Since it is not in the best interests of the parent to produce a
selfish brood, resources could be withheld from the selfish offspring and the
consequent decrease in fitness would prevent the spread of these selfish
alleles. To study this problem, Feldman and Eshel (1982) constructed a two-
locus model in which one locus controlled the propensity of an individual
to be altruistic as a sib and the second locus determined whether a parent
would interfere with its offspring. Feldman and Eshel then show that the
evolution of parental interference may depend on the particular equilibrium
at the altruism locus. When the population is at a viability analogous equi-
librium for the altruist alleles, parental interference will not evolve under
the conditions examined. However, it is possible for parental interference
to evolve when the population is at a structural equilibrium. Since inclusive-
fitness models do not produce the structural equilibria, they would fail to
uncover this interesting phenomena.

Two-Locus Kin Selection

The first detailed analysis of an exact two-locus, sib—sib, model of kin se-
lection was conducted by Mueller and Feldman (1985). This model assumes
that genotypes are altruistic with probability hy, h, or hy, depending on
whether the genotype is heterozygous at both loci, one, or neither locus. In
that article it was shown that a monomorphic selfish population could be-
come polymorphic and more altruistic even when /2 < v. In particular, a
population that is monomorphic at both loci may be unstable to the intro-
duction of alternative alleles at each locus when p/2 < v, h; > ho and linkage
is neither too tight or too loose. Consider the following example: B = 1.9,
v =10, h = 0, iy = 1, h, = 0.1 and 0.001 < r < 0.47, where r is the
recombination fraction. In a population fixed for the A and B alleles, the
introduction of small numbers of a and b alleles results in an initial increase.
This population ultimately converges to a viability analogous equilibrium at
one locus, and fixation at the second. Recall the earlier summary of the
single locus theory. For the parameter values given above, the fixation states
and the viability analogous equilibrium were locally stable and the population
could not move from an allele fixation to the viability analogous equilibrium.
The addition of a second locus controlling altruism provides such a mech-
anism, and thus the stable equilibrium unattainable from the single locus
theory is in fact an attainable state under a more complicated genetic system.
Needless to say, none of this behavior could be observed with the inclusive-
fitness models.
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Uyenoyama (1987) has recently shown how initial increase conditions
for two locus models may be summarized by a rule analogous to equation
(1). However, the value of the coefficient of relatedness depends on current
genotype frequencies and thus could not be properly predicted from inclu-
sive-fitness models. Furthermore, Uyenoyama has shown that the ability of
new alleles to increase in these two locus models can differ markedly de-
pending on whether the population was initially at a single-locus structural
or viability analogous equilibrium.

Loss Modification

All models considered so far have treated the loss ('y) and gain () compo-
nents of fitness as fixed constants. It seems reasonable to assume that
changes in physiology or behavioral repertoire may make certain altruistic
acts less costly. To examine this problem, we have constructed a two-locus
model in which the genotypes at the first locus (AA, Aa, aa) determine the
probability of performing altruistic acts (h;, k2, h3) and the genotypes at the
second locus (BB, Bb, bb) determine the loss suffered by altruists (k;vy, k2,
ksy). If we consider a population fixed for the B allele, we can determine
the conditions necessary for the b allele to increase when rare, if the pop-
ulation is either monomorphic at the A locus, at a viability analogous equi-
librium or a structural equilibrium at the A locus. The actual analysis of
these problems is quite complicated (see Appendix) but in all cases exam-
ined, we find that the b allele will increase when rare, if k> < k;. That is, if
the loss suffered by the Bb heterozygotes is less than that suffered by the
common BB homozygotes, the b allele will increase. Such a result is quite
intuitive and probably could have been predicted from an inclusive-fitness
model. The example serves to illustrate two points. First, as noted by Cav-
alli-Sforza and Feldman (1978) the exact models do not always produce
results differing from the inclusive-fitness models. However, forcasting a
priori which problems can be satisfactorily handled by the inclusive-fitness
models does not seem to be possible. Examination of the detailed analysis
of this loss modification model shows that certain results are intuitive only
with hindsight.

These examples have demonstrated the usefulness of exact-population
genetic models of kin selection for detecting phenomena of biological in-
terest. In most cases, the inclusive-fitness models would not have uncovered
the phenomena just mentioned and thus any extra work involved in devel-
oping exact-population genetic models would seem to be more than justified.

The Evolution of Altruism and Cooperation with Cultural
Transmission

Cavalli-Sforza and Feldman (1973a, 1973b, 1981) and Feldman and Cavalli-
Sforza (1975) developed a theory for the evolution of cultural transmission.
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Pulliam (1982) showed how this theory could be used to model the evolution
of cooperation and Werren and Pulliam (1981) used classical accounts of the
degree of genetic relationship in a model that included a genetic component
to cooperation. Boyd and Richerson (1982) extended these models to a sit-
uation of interdemic selection. Feldman et al. (1985) addressed the problem
of culturally transmitted altruistic traits using the population genetic theory
outlined above. Their model assumes that altruism may be learned from a
parent and that the probability that an offspring is altruistic depends on the
parents’ phenotype and the offspring genotype. Their results show that non-
genetic transmission may involve substantial departures from the predic-
tions of the simple inclusive-fitness approach. Such results forcefully argue
for the continued development of such models before any generalizations
are made concerning the evolution of altruism in human populations.

A Comparison with Theory for the Evolution of Cooperation

The classical theory of kin selection is essentially one of initial increase of
an allele that enhances altruistic behavior. There has been, by comparison,
much less focus on conditions that produce fixation of such alleles, even
though there is little or no evidence for variation in the behavior studied in
most species to which the theory is applied. The polymorphic equilibria we
have described above are important because they define parameter sets and
delimit domains of attraction that allow progress to fixation. If the parametric
conditions for initial increase and final fixation are the same, it does not
follow that fixation always occurs.

It is interesting that the evolutionary theory of cooperation, via the
prisoner’s dilemma is primarily one of final fixation, not initial increase. In
fact, Axelrod (1981) is clear that with random encounters, the cooperative
strategy tit-for-tat (TFT) cannot invade a population of egoists. Neverthe-
less, empiricists have accepted the TFT paradigm in the same way they
accepted the kin-selection theory regardless of the fact that they apply to
opposite ends of the phenotype frequency spectrum.

Axelrod (1981) pointed out that, if intense enough, clustering of co-
operatives can allow initial increase of TFT in an egoistical world. Feldman
and Thomas (1987) have developed a dynamic theory for the prisoner’s di-
Iemma framework in which the probability of continuing to play depends on
the history of the game. Polymorphisms arise naturally in this case and TFT
may increase when rare. In the analysis, it is shown that clustering is formally
analogous to population genetic models of mixed self-fertilization and ran-
dom mating, except that the ‘‘fitnesses’’ are asymmetric. Thus, ‘‘relation-
ship’’ among cooperatives is ensured and if this is close enough (i.e., the
propensity to cluster is great enough), initial increase of TFT may occur for
sets of payoffs that preclude the advance of TFT in the absence of clustering.

We thank M.K. Uyenoyama for many helpful discussions. This research has been supported
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Loss Modification Model

We assume a genetic system with two alleles at each of two autosomal loci.
Locus A determines the nrnhahlhtv that a genotype is altruistic. Thus, ge-

notypes AA, Aa, and aa are altruistic with probabilities by 4, h», and hs.
The performance of an altruistic act involves a loss in fitness proportional
to hikyy. The value of k; is determined by the genotype at the B locus. The
k parameters for genotypes BB, Bb, and bb are k,, k>, and ks, respectively.
Altruistic interactions will be assumed to be between full sibs. Consequently,
an individual will experience an increase in fitness equal to  times the
probability of encountering an altruistic sib. As in our previous kin selection
models (Uyenoyama et al. 1981; Mueller and Feldman 1985) we assume that
the loss and gain components of fitness are combined in an additive fashion.
We will iabel the gametes AB, Ab, aB, and ab, 1 to 4 respectiveiy.

Then, the ﬁtnesses of the various two locus genotypes are proportional

AA Aa aa
BB 1 — h1k1‘y + _Bd)]] 1 — hzk]‘y + B(i)u 1 — h3k1‘y + B¢33
Bb 1 — hiky + Bdbiz 1 — hakyy + Bdis 1 — hskay + Bdag
bb 1 — hiksy + Bd 1 — haoksy + Bdag 1 — hsksy + Bdas

where ¢; is the conditional probability that genotype ij has an altruistic sib.
Let the frequencies of the four gametes AB, Ab, aB, and ab be x, x2, x3,
and xg4 respecuvely and r, the recombination fraction between the A and B
locus. We can now write the recursions for the ten two-locus genotypes

below.

Weiy = (1 ~ hikiy) + B, (Ala)
Weiy = 26151 — hik2y) + Bfizs (Alb)
Wgis = 25153(1 — hakiy) + Bfus, (Alc)
Wgia = 261541 ~ haok2y) + Bfia, (A1d)
Wgs, = 531 — ksy) + Bfa, (Ale)
Wegis = 2i025%(1 — hakay) + Bf2s, (A1)
Weia = 25,84(1 — haksy) + Bfaa, (Alg)
Weis = 531 — hskiy) + Bfss, (Alh)
Wels = 28384(1 = hakzy) + Bfaa, (Ali)

Wgis = 23(1 — haksy) + Bfas, (Alj)
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where

.f] = Xx; + rL/2,

I

X» = x3 — rL/2,
X3 = x3 — rL/2,
X4 = x4 + rL/2,
L = gy — g4,

and W is a normalizer equal to the sum of the right hand sides of equations
(A1). :

The joint probability of being genotype ij and having an altruistic sib is
denoted by f;;. Calculation of the various f;;s is done in a manner identical
to that described in Mueller and Feldman (1985). Each f;; expression con-
tains terms multiplied by &, h;, and h;. For simplicity Table Al contains
the f;; expressions grouped as coefficients of 4, 4> and hs.

We now proceed with the analysis of this model. We are particularly
interested in studying the evolution of the loss parameter (4;s) from various
initial equilibria. First, we assume the population is fixed for the A and B
alleles (corner equilibrium). We then find conditions that guarantee stability
of the corner equilibrium. We also examine the initial increase conditions
for alleles at the B locus when the A locus is at a stable polymorphism. As
mentioned previously, there are two kinds of single locus equilibria: viability
analogous and structural. We consider each of these equilibria in our
analysis.

Stability of a Corner Equilibrium

We assume the population is initially fixed for the AB/AB genotype. Our
problem is to find conditions under which the corner remains stable in the
presence of a small number of ab haplotypes. The analysis reduces to ex-
amining the linear dynamics of the three rare genotypes, AB/ab, AB/aB, and
AB/Ab in the neighborhood of the equilibrium point g, = 1. If g = (g2,
213, £14)7, then the linear dynamics are given by g’ = Ag, where,

1 1 - kz/’ll'y + Bhl’ 0,
A = } 0, 1 - k]/’lz’y + B(h] + hz)/z,
0,’ 05

r(1 — kyhyy) + Br(hy + h)2
r(l - klhz’\/) + Br(h1 + hz)/z .
(1 = N = khoy) + B — r)(h + h2)2

and T =1 + Bhl — k]l’l]'Y.
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Table Al. Joint Probabilities, f;;, of Being Genotype ij and Having an Altruistic Sib. Each fj; is the Sum of

Thraa Tarme (livan Ralaw Whinkh Awa Munléinliad he and Dacnantivaly The Tallawdes
AT LTINS UiV L0W, vyl Al Viltsupuda oY uo, n“ ana uz, RESPECHVELY. Anic ¥ unuwulg

Identities Are Used Throughout: L = g3 ~ g4, V = g14(1 — 7) + gasr, M = g1ar + gaa(1 ~ r).

h; — terms

fii = x1Q2g11 + g12)2 + guis(gis + 21416 + rL(4gy; + 2g12 + g13)/8 + V2/16
fa2 = %2822 + 812)2 + g2a(gas + 2823)/16 — rL(dgaz + 2812 + £24)/8 + M?/16
i3 = gis(gs + 2g23)/16 — giarL/8 + M?/16
1aM16 + garL/8 + V216
frz = x1(2g22 + £12)/2 + x2(2811 + £12)2 + (81382 + £13824 + £14824)8
+ rL{4{g2 — gn) + 824 — £131/8 + VM/8
fi3 = (g3 + g2)2gu + £12)/4 + gi13(g13 + 814 + £23)/8 — rL(2g1 + g12)/4 + MV/8
fas = (814 + 224)(2822 + g12)/4 + g24(g14 + £23 + £24)8 + rLQ2g2; + g12)/4 + MV/8
fia = (813814 + 813824 + £23824)/8 + rL(g13 — £24)/8 + MV/8
Fia = (g1a + 224)2811 + g12)/4 + (13814 + £13824 + £12824)/8 + rL(4g1 + 2812 + g13 + g24)/8 + V?/8

fzz = (gis + gn)(2g22 + gu2)l4d + (guags + g13g24 + 823824)/8 — rL(4gm + 2g12 + g1 + g2s)8 + M8

h; — terms

fii = (g3 + 1) (2gn + g2l + g13(2g1s + 213)/8 + rL(2gn + g1z + giz}4) + V8
f22 = (g3 + £24)(2g22 + £12)/4 + 2242823 + g24Y8 — rL2g2 + g1z + g24)/4 + M*8
faz = (g13 + £23)(283 + g34)/4 + 213282 + g13)/8 — rL(2g3s + g3 + g34)/4 + M8
faa = (g1a + 824)2gss + g3a)4 + 2242814 + £24)/8 + rL(2gas + £24 + £34)/4 + V8
Fiz = guxa/2 + g24(xy — g13/2)/2 + gx(2g11 + g12)/4 + £14(2822 + g12)/4
+ rL[2(gz2 ~ gu) + 82 — gu3:}4 + MV/4
Fi3 = gaxy + x3(2gn + g12)2 + gi3(gis + g + g1t g34)4 + 234211 + g1z + g1a)/4
+ rL(2g33 + g3a — g12 — 2gn )4 + MV/4
f2a = gnXs + x2(284s + g3a)/2 + g24(g12 + 814 + g3 T g24)4 + 2122844 + g1a + gra)/4
+ rL[2(g22 — g44) + 812 — 83414 + MV/4
f3a = gusxal2 + g2a(xs — g13/2)/2 + g0(2844 + £34)/4 + 214283 + g34)/4
+ rL[2(gx — gaa) + g13 — g4 + MV/4
f1a = %1844 + 834)12 + x4(2811 + £12)/2 + (813814 + 813824 + £14824)/4

. .

o oo s 4 A 1+ V24
Eaa T Fiz T F13 7 AR g

24 + g34)/4

)

23 = x2(2g33 + £34)/2 + x3(2g22 + g12)2 + (13823 + £13824 + g23824)/4

—rL2gx + 283 + g2 + g3 + g4 + g14)4 + M4
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Table Al. (Continued)

hz — terms

Ffu = gin(gis + 2814)/16 + gi3rL/8 + V16
F22 = g24(g24 + 2823)/16 — gaurL/8 + M?/16
fa3 = x3Q2g33 + g3a)2 + g13(g1s + 2823)/16 — rL(4gss + 2834 + £13)/8 + M?/16
fas = %4844 + 230)2 + £24(g24 + 2214)/16 + rL(4gsa + 2834 + £24)/8 + V¥/16
F12 = (1382 + €13824 + £14824)/8 + rL(g24 — g13)8 + MV/8
Ffiz = (g3 + £214)(2833 + g34)/4 + gu13(g1s + gua + £23)/8 + rL(2gss + ga)/4 + MVIR
faa = (823 + £24)(28as + g34)/4 + gau(gra + g23 + £24)/8 — rL(2gas + g34)/4 + MV/8
F3a = x4(2g33 + g34)2 + x3(2gaa + £34)/2 + (g13814 + £13824 + £23824)/8
+ rL[4(gss — gaa) + g13 — 82418 + MV/8
fla = (g3 + £10)28as + 234)4 + (21314 + 814824 + £13824)/8 + rL(4gas + 2g34 + 813 + g24)/8 + V8
fo3 = (g2 + £24)2833 + gaa)4 + (2132 + 813824 + £23824)/8 — rL(4gss + 2g3s + g13 + g24)/8 + M8

The matrix A has three unique eigenvalues:

1 — kahyy + Bhy

)\1 - 1 + Bhl - klhl'y ’

N = 1 — kihyy + B(hl + hy)2

2 1+ Bhl - klhl'y ’

e = (1 = N = khy) + BU — Nl + )2
3 - .

1 + By — kiluy
The AB fixation is stable if A1, X\, A3 < 1. These conditions reduce to
ky > ki, (A2a)
(h — h)B2 — kiy) <0, (A2b)
y(kihy — kahz) + Blhz — h)2 = r[2(1 — kahay)
+ Bl + h2))2 < 0. (A2¢)

If inequalities (A2a) and (A2b) are satisfied, then (A2c) is always true. Since
conditions (A2a) and (A2b) are also the conditions for the protection of single
locus monomorphism, we can conclude that if both the a and b alleles fail
to increase at their separate loci, they will also fail to increase in the linked
two locus systems.

Stability at the A Locus; Increase of Loss Alleles Linked to a
Polymorphism

We now consider a population that is at a stable viability analogous equi-
librium and fixed for the B allele. Consequently, £; = (hx — h3)/(2h, — Iy
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— h3). To study the conditions necessary for the initial increase of b alleles,
we need to examine the dynamics of the four rare genotypes AB/Ab, AB/
ab, Ab/aB, and aBlab in the vicinity of the viability analogous equilibrium.
Ifg = (g12, 814, &23, g34)", then the dynamics of the rate genotypes may be
summarized as g’ = Bg. The largest eigenvalue of B is

_ 1+ (B~ key)(h3 — hihs)/2hs — hy — hs)
1+ (B — kiy)(h3 — mh3)/Qhy — hy — h3)

A

For \; to be greater than 1, we must have k; > k. Thus, b alleles can get
into the population only if the loss suffered by the Bb heterozygotes is less
than the loss BB homozygotes experience.

The previous result is true when the A locus is at a viability analogous
equilibrium. We now derive initial increase conditions assuming the A locus
is at the structural equilibrium. The same matrix, B, determines stability in
this problem. The difference between the two problems is that the values
of £; and g5 are not the same. In particular there is no simple expression
for £,, since it is the solution of a quadratic equation (Uyenoyama and Feld-
man, 1981). Finding the largest eigenvalue of B at the structural equilibrium
has proven to be quite difficult. We can make progress for the case of r =
0. With absolute linkage, the matrix B breaks into two 2 X 2 matrices.

The first 2 x 2 matrix for the r = 0 case is given below.

(1 — kalyy)x, + %[4131/“ + gialhy — A1), (I — kahyy)3y + g [45,(hy + ha) + i3k — R

1

T (1 = kzhoy)(l — %)) (A3)
(1 = khy)(l — %) + %[4“ = &)y + gualhy — k)], + %[4“ — 2 + k) + giath - k).

where T = 1 + (B — kiy)[[£3h; + 281 — 2Dha + (1 — %1)?hs]. After
some algebra, we find that the largest eigenvalue of (A3) is less than
1if
£1(1 — 2)Bylki(hihs — B3) + ka(hy — h)(hy ~ R)] — kiyh(1 — kayhy)
— kiylty + ha(1 = 2DIB — kiy) + kayhi] (A4)
— TIB(hy — h) — y(kohy — ki) — ykahi]1 > 0,
where
o= tih + (1 = #)ha,
hy = £1hy + (1 — £1)hs,
h=%h + 0 - £)h,.
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By itself, this inequality is not very informative. We can, however,
obtain some simple results by noticing the following features of (A4). The
inequality (A4) is a linear function of k.. Thus, if we can determine the
value of this function for two values of k; we may be able to derive a simple
relationship between the magnitude of the largest eigenvalue and k. We
first start with k, = k, = k. Again, after some algebra we find that the
expression on the left of equation (A4) is equal to

(hy — R){—Uky) (i + hs(1 — %) + k]
+ Bkylhtr + hs(1 — %1) + 2h] — B*h — B + 2kv}. (AS)

From Uyenoyama and Feldman (1981) we know that the allele frequencies
at the structural equilibrium satisfy the following quadratic equation:

xB — VQha = b — k)] + xil(B — V2 + hs — 2hy)
+ (= )P -2y - B + 2y = B + m:(B — ] =0. (A6

If we note that v in (A6) is equal to kvy in our notation, equation (A6) can
be rearranged to yield

—(ky)2[1if; + ha(1 — 1) + K] + Bkylit + hs(1 — %) + 2A]
- B%h — B + 2ky =0.

Thus, (AS) is equal to 0 when k; = k;. We next set ko, = 2k; = 2k in
the left side of equation (A4). Rearranging this expression yields

kyhha(B — ky) + hs(1 — 2)hoky(B — ky) + kyhha(1 — ky)
+ Rikylhih21(B — ky) + (1 — £1)BA3] + 2kvyha%,
+ (1 - .)21)k'yh3(2 - ]’l]k’Yf1) (A7)

If B > kv, then each element of (A7) is positive, hence the whole expression
is positive. We can now conclude that for the inequality (A4) to hold requires
k; > ky. Analysis of the second 2 X 2 matrix from B yields the same result.
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