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The development of a theory of kin selection has proceeded along two lines. Inclusive- 
fitness models have implicitly assumed that sel~tion is weak, whereas exact-population 
genetic models place no constraints on the strength of selection. Several examples are 
presented showing that qualitatively new behavior has emerged from the exact models. 
However, for many problems, the exact-population and inclusive-fitness models often 
yield identical results. Unfortunately, it is not possible to identify a priori those problems 
that can be handled sufficiently by the simpler inclusive-fitness models. The initial 
increase of cooperative behavior in a population of egoists involves diiculties similar 
to the Initial increase of altruism. Clustering of cooperatives produces dynamics for 
the increase of cooperation that are formally similar to population models of inbreeding. 
Here, an increase in the tendency to cluster is equivalent to increasing the “relation- 
ship” among cooperatives, and therefore augments the chance for cooperation to 
increase. 
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INTRODUCTION 

A 
ltruistic behavior appears to be common among humans and other 
species of animals. Although the meaning of “altruism” may vary, 
we first illustrate the phenomena with examples from several di- 
verse animal groups, and later we present a precise definition that 

forms the basis of our population genetic models. 
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Several bird species among the swifts, kingfishers, and bee eaters ex- 
hibit cooperative breeding in large colonies (Emlen 1978). Studies of the 
white-fronted bee eater (Merops bufockoides) show that more than 70% of 
nests are tended by helpers. These helpers take part in nest excavation, 
incubation and feeding and defending the young. 

Perhaps the most extreme examples of cooperation and altruism are the 
social insects. In many species of bees and ants, female workers forego 
reproduction in order to raise the queen’s offspring. Honeybees will often 
die upon stinging a perceived intruder. Such heroic acts extend to raising 
young such that worker honeybees will metabolize their own tissue protein 
to feed larvae when fed only sugar water (Wilson 1971). 

To many, altruistic behavior of the sort just described seemed contrary 
to the theory of natural selection. How could such sacrifice result from a 
process favoring genotypes that leave large number of offspring? Haldane 
(1953, Williams and Williams (1957), Hamilton (1964) and Maynard Smith 
(1964) all recognized that individuals can transmit their genes to the next 
generation by having their own offspring or by helping close relatives have 
many offspring. Hamilton quantified these ideas in what has become known 
as Hamilton’s rule. 

Pbm > Y. (1) 

This rule states that behavior directed from altruist to recipient will be fa- 
vored by natural selection if the gain in fitness (p) experienced by the re- 
cipients discounted by a coefficient of relatedness (bAR), between altruist 
and recipient, is greater than the loss in fitness (y) suffered by the altruists. 
If bAR is interpreted as the probability that the recipient contains an allele 
identical to one in the altruist, equation (1) can be restated: if the behavior 
causes relatives to produce f3bAR more “altruist” alleles, and altruists to 
produce y fewer “altruist” alleles, the behavior will be favored by natural 
selection if there is a net gain in “altruist” alleles, for example, PbAR - y 
> 0, which is simply equation (1). 

The major qualitative inference from Hamilton’s rule is that altruistic 
behavior is more likely to evolve among closely related individuals than 
among distant relatives. This has been invoked to explain the unusual con- 
centration of sociality among the insect Hymenoptera. The genetic system 
of these insects is haplo-diploid. Females emerge from fertilized, diploid 
eggs, whereas males are haploid and develop from unfertilized eggs. Sisters 
in diploid species have a coefficient of relatedness of i, whereas this quantity 
is 2 in haplo-diploid species. Multiple insemination, however, may lower 
this figure substantially. 

The appearance of sociality among diploid termite species might be 
explained by similar phenomena, although this is still a matter of contention 
(Crozier and Luykx 1985). In several species of termites, nearly 50% of the 
genome occurs in translocations of the X chromosome (Lacy 1980). This 
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makes it more likely for sisters to carry the same altruistic alleles, since they 
all inherit the same X chromosome from their father. 

Although Hamilton’s rule and the heuristic justification we have pro- 
vided are intuitively attractive, we know that natural selection in general 
does not simply maximize the number of copies of the “best” allele or even 
the mean fitness of a population. To actually quantify the action of natural 
selection, we need to take into account such things as Mendelian genetics 
and differences in the fitness of alternative genotypes. 

Two different approaches have been used in the development of pop- 
ulation genetic models of kin selection. The inclusive fitness models (Char- 
nov 1977; Charlesworth 1978; Wade 1979; Michod and Abugov 1980; Abugov 
and Michod 1981) implicitly assume that selection is weak and, therefore, 
genotype frequencies will remain in Hardy-Weinberg proportions after se- 
lection. The exact population genetic models (Levitt 1975; Cavalli-Sforza 
and Feldman 1978; Uyenoyama and Feldman 1981; Uyenoyama et al. 1981; 
Toro et al. 1982; Matessi and Karlin 1984) can accommodate selection of 
any intensity. The exact models are substantially more difficult to analyze 
and have yielded results that are sometimes at odds with Hamilton’s rule. 
This state of affairs has lead Maynard Smith (1983) to suggest that “the main 
service that population geneticists can perform is to specify the circum- 
stances in which inclusive fitness methods can safely be applied.” 

The theory of reciprocal altruism, originated by Trivers (1971), was 
certainly eclipsed as an explanatory force for behavioral ecologists by the 
theory of kin selection. This hiatus lasted about 10 years but has given way 
to a new wave of activity connected with the evolution of cooperation. This 
renewed focus of interest on reciprocal altruism derives from the application 
of rational choice models to animal behavior by Axelrod and Hamilton 
(1981). The framework for this is the continued prisoner’s dilemma game, 
and does not include genetic contributions to the cooperation-noncooper- 
ation dichotomy. There are, however, ways in which genetics might be in- 
cluded in these models for the evolution of cooperation. Axelrod (1981) 
suggested that clustering of cooperative individuals would increase the 
chance of their invasion. If the dichotomy were genetic, this would be equiv- 
alent to assortative mating (Eshel and Cavalli-Sforza 1982) or possibly some 
form of inbreeding. 

An alternative genetic framework would take one or more of the pa- 
rameters in the prisoner’s dilemma model to be under genetic control, 
namely, the payoffs or the discount rate. Then one might ask whether genes 
that result in a higher (or lower) discount rate would be favored in evolution. 
The analysis of such issues could involve integration of the approach we 
use in this article in studying the evolution of parameters of kin selection, 
with some of the ecological models of cooperation discussed by the other 
authors in this volume. 

In this article, we review published exact-population genetic models 
and present a new model whose object is to determine if their predictions 
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could have been anticipated from the simpler inclusive fitness models. Two 
major conclusions follow from these examples. First, qualitatively new be- 
havior is seen in the exact-population models that is not present in inclusive- 
fitness models. The models differ in ways other than just their quantitative 
predictions of allele frequencies (Grafen 1985). Second it is nearly impossible 
to predict a priori which problems can be completely understood with in- 
elusive-fitness models. We conclude that the development of exact models 
of kin selection must be viewed as an important and necessary step for 
progress in this field. 

POPULATION GENETIC MODELS 

Notation 

We allow for n different alleles at a single locus. These alleles are denoted 

AI,&, . . . , A,. The frequencies of these alleles in the population are pl, 

P2, * * ’ 7 p,,, Lastly, we let genotype AiAj occur with frequency gij. 

Life Cycle 

The organism reproduces at discrete intervals, in which there is random 
mating and an infinite population size. The life cycle is given below. 

Zygotes a Adults ‘razi.y > Zygotes 
gij = 2pipj Selection ’ &?ij g; x dj 

etc. 

Initially, the zygotic genotypes are in Hardy-Weinberg equilibrium. How- 
ever, after selection, the adult genotypes are not in Hardy-Weinberg pro- 
portion and, hence, genotype frequencies must be specified in the exact 
models so that the precise frequencies of all families can be computed. The 
inclusive fitness models approximate adult genotype frequencies, gt, with 
their Hardy-Weinberg expectations. 

Genotypes and Phenotypes 

Hamilton’s original model assumes, implicitly, that genotypes are either al- 
ways selfish or altruistic. Here, we allow genotype AiAj to be altruistic with 
probability hij where 0 I hij I 1. 

Fitness 

Each genotype will have two independent components to its net fitness. 
Fitness will be incremented by altruism received by the genotype and dec- 
remented as a result of altruism performed by the genotype. This increment 
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will be equal to Pfij, where j$ is the probability that genotype AiAj has an 
altruistic relative (sister, brother, sib, etc.) and will be decremented by rhij. 
As pointed out by Cavalli-Sforza and Feldman (1978) there are two natural 
ways in which fitness might be computed. The additive model sets the fitness 
of genotype AiAj, Wijy proportional to 

WijQl - rhij + P_fii, 

whereas the multiplicative model has 

w&l - yhij)(l + Pfij). 

These formulations are not equivalent, and Hamilton’s rule is most consis- 
tent with the additive formulation. 

RESULTS 

Abugov and Michod (1981) have shown that identical expressions are ob- 
tained for allele frequency dynamics from Hamilton’s model and the inclu- 
sive-fitness models. Thus, these two models can be considered equivalent 
with respect to important predictions they might make. 

Two basic types of questions have been addressed using the exact- 
population genetic models of kin selection. The initial increase question asks 
under what conditions a rare mutant allele, which affects altruism, will be 
able to increase in frequency. Cavalli-Sforza and Feldman (1978), Uyen- 
oyama and Feldman (1981) and Uyenoyama et al. (1981) drew attention to 
polymorphic equilibria and to the importance of fixation on the altruistic 
allele. 

For the initial increase problems, Hamilton’s theory predicts that a rare 
genotype that is always altruistic should increase in frequency in a selfish 
population if (1) holds. When genotypes are altruistic to varying degrees, 
equation (1) can be modified to: (h12 - hll)pbAR > 0. Cavalli-Sforza and 
Feldman (1978) have shown that the multiplicative, exact-population-genetic 
models yield initial increase conditions that are not simply expressible in 
terms of relationship coefftcients. Cavalli-Sforza and Feldman have also 
shown that initial increase conditions for the additive model are more often 
consistent with Hamilton’s theory. 

The exact single locus models yield two types of polymorphic equilibria 
(Uyenoyama and Feldman 1981; Uyenoyama et al. 1981). The viability anal- 
ogous equilibrium is characterized by equilibrium allele frequencies that can 
be determined by treating the hijs as viabilities and using the standard results 
from single locus viability models (Ewens 1979, chap 2). Equilibrium allele 
frequencies for the structural equilibria are usually solutions to quadratic or 
higher order polynomials and depend on the hiis, p and y. Only the viability 
analogous equilibria can be extracted from the inclusive-fitness models. Re- 
gardless of this similarity, the stability conditions for the viability analogous 
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equilibria depend on the population genetic model used. For an inclusive- 
fitness sib-sib model, Michod and Abugov (1980) show that viability anal- 
ogous equilibrium for two alleles is stable when p/2 > y and hr2 > hr, , hz2. 
The conditions for its stability from the exact-population genetic models are 
more complicated (Uyenoyama and Feldman, 1981). In addition to the pre- 
vious result from the inclusive-fitness model, the exact models also predict 
stability in special cases of the viability analogous equilibrium when, 

PI2 < Y and h12 > hrr, h22, (2a) 

or 

p/2 > y and h12 < h,,, h22. (2b) 

It should be noted that when conditions (2a) and (2b) hold, in addition to the 
stable polymorphic equilibrium, there are states corresponding to fixation 
of the Al or A2 allele that are locally stable. Thus, it would seem that in a 
monomorphic population, these polymorphic equilibria could never be 
reached unless some stochastic process leads to the introduction of large 
numbers of the alternative allele. We see below that this is not the only 
possibility. 

It is clear that exact-population genetic models predict different stability 
conditions for the viability analogous equilibrium than do the inclusive-fit- 
ness models and yield additional polymorphic equilibria. We next address 
this very important question: at a theoretical level, do the additional com- 
plications of the exact-population genetic model result in interesting biolog- 
ical phenomena that could not have been predicted or anticipated from the 
simpler inclusive-fitness models? Our answer is a resounding yes. 

NEW PHENOMENA FROM THE EXACT POPULATION 
GENETIC MODELS 

Altruism With Inbreeding 

It has been suggested (Hamilton, 1964) that inbreeding may facilitate the 
evolution of altruism. Uyenoyama (1984) has examined a number of exact 
models that incorporate regular systems of inbreeding such as selfing, par- 
thenogenesis, and sibmating. Although her primary finding has been that 
inbreeding does not always promote altruism, and indeed may actually make 
it more difficult to evolve, she also shows that genetic polymorphisms are 
possible with inbreeding. Nevertheless, we find that these polymorphic equi- 
libria are all structural and thus, presumably, would not be present in the 
analogous inclusive-fitness models. The exact-population genetic models 
have thus lead to a qualitatively new result concerning the existence of 
polymorphisms with inbreeding. 
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Parental Interference 

The arguments presented previously to study the evolution of altruism can 
be reversed to study the evolution of selfish behavior. Thus, for interactions 
between full sibs, selfish behavior should evolve if p/2 < y. Alexander (1974) 
claimed that such selfish behavior among sibs could be prevented by parental 
interference. Since it is not in the best interests of the parent to produce a 
selfish brood, resources could be withheld from the selfish offspring and the 
consequent decrease in fitness would prevent the spread of these selfish 
alleles. To study this problem, Feldman and Eshel(l982) constructed a two- 
locus model in which one locus controlled the propensity of an individual 
to be altruistic as a sib and the second locus determined whether a parent 
would interfere with its offspring. Feldman and Eshel then show that the 
evolution of parental interference may depend on the particular equilibrium 
at the altruism locus. When the population is at a viability analogous equi- 
librium for the altruist alleles, parental interference will not evolve under 
the conditions examined. However, it is possible for parental interference 
to evolve when the population is at a structural equilibrium. Since inclusive- 
fitness models do not produce the structural equilibria, they would fail to 
uncover this interesting phenomena. 

Two-Locus Kin Selection 

The first detailed analysis of an exact two-locus, sib-sib, model of kin se- 
lection was conducted by Mueller and Feldman (1985). This model assumes 
that genotypes are altruistic with probability h*, hl or ho, depending on 
whether the genotype is heterozygous at both loci, one, or neither locus. In 
that article it was shown that a monomorphic selfish population could be- 
come polymorphic and more altruistic even when p/2 < y. In particular, a 
population that is monomorphic at both loci may be unstable to the intro- 
duction of alternative alleles at each locus when p/2 < y, hl > ho and linkage 
is neither too tight or too loose. Consider the following example: p = 1.9, 
y = 1.0, ho = 0, hl = 1, h2 = 0.1 and 0.001 < r < 0.47, where r is the 
recombination fraction. In a population fixed for the A and B alleles, the 
introduction of small numbers of a and b alleles results in an initial increase. 
This population ultimately converges to a viability analogous equilibrium at 
one locus, and fixation at the second. Recall the earlier summary of the 
single locus theory. For the parameter values given above, the fixation states 
and the viability analogous equilibrium were locally stable and the population 
could not move from an allele fixation to the viability analogous equilibrium. 
The addition of a second locus controlling altruism provides such a mech- 
anism, and thus the stable equilibrium unattainable from the single locus 
theory is in fact an attainable state under a more complicated genetic system. 
Needless to say, none of this behavior could be observed with the inclusive- 
fitness models. 
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Uyenoyama (1987) has recently shown how initial increase conditions 
for two locus models may be summarized by a rule analogous to equation 
(1). However, the value of the coefficient of relatedness depends on current 
genotype frequencies and thus could not be properly predicted from inclu- 
sive-fitness models. Furthermore, Uyenoyama has shown that the ability of 
new alleles to increase in these two locus models can differ markedly de- 
pending on whether the population was initially at a single-locus structural 
or viability analogous equilibrium. 

Loss Modification 

All models considered so far have treated the loss (y) and gain (l3) compo- 
nents of fitness as fixed constants. It seems reasonable to assume that 
changes in physiology or behavioral repertoire may make certain altruistic 
acts less costly. To examine this problem, we have constructed a two-locus 
model in which the genotypes at the first locus (AA, Aa, aa) determine the 
probability of performing altruistic acts (h, , ha, h3) and the genotypes at the 
second locus (BB, Bb, bb) determine the loss suffered by altruists (kir, kzy, 
k3-y). If we consider a population fixed for the B allele, we can determine 
the conditions necessary for the b allele to increase when rare, if the pop- 
ulation is either monomorphic at the A locus, at a viability analogous equi- 
librium or a structural equilibrium at the A locus. The actual analysis of 
these problems is quite complicated (see Appendix) but in all cases exam- 
ined, we find that the b allele will increase when rare, if kz < k, . That is, if 
the loss suffered by the Bb heterozygotes is less than that suffered by the 
common BB homozygotes, the b allele will increase. Such a result is quite 
intuitive and probably could have been predicted from an inclusive-fitness 
model. The example serves to illustrate two points. First, as noted by Cav- 
alli-Sforza and Feldman (1978) the exact models do not always produce 
results differing from the inclusive-fitness models. However, forcasting a 
priori which problems can be satisfactorily handled by the inclusive-fitness 
models does not seem to be possible. Examination of the detailed analysis 
of this loss modification model shows that certain results are intuitive only 
with hindsight. 

These examples have demonstrated the usefulness of exact-population 
genetic models of kin selection for detecting phenomena of biological in- 
terest. In most cases, the inclusive-fitness models would not have uncovered 
the phenomena just mentioned and thus any extra work involved in devel- 
oping exact-population genetic models would seem to be more than justified. 

The Evolution of Altruism and Cooperation with Cultural 
Transmission 

Cavalli-Sforza and Feldman (1973a, 1973b, 1981) and Feldman and Cavalli- 
Sforza (1975) developed a theory for the evolution of cultural transmission. 
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Pulliam (1982) showed how this theory could be used to model the evolution 
of cooperation and Werren and Pulliam (1981) used classical accounts of the 
degree of genetic relationship in a model that included a genetic component 
to cooperation. Boyd and Richerson (1982) extended these models to a sit- 
uation of interdemic selection. Feldman et al. (1985) addressed the problem 
of culturally transmitted altruistic traits using the population genetic theory 
outlined above. Their model assumes that altruism may be learned from a 
parent and that the probability that an offspring is altruistic depends on the 
parents’ phenotype and the offspring genotype. Their results show that non- 
genetic transmission may involve substantial departures from the predic- 
tions of the simple inclusive-fitness approach. Such results forcefully argue 
for the continued development of such models before any generalizations 
are made concerning the evolution of altruism in human populations. 

A Comparison with Theory for the Evolution of Cooperation 

The classical theory of kin selection is essentially one of initial increase of 
an allele that enhances altruistic behavior. There has been, by comparison, 
much less focus on conditions that produce fixation of such alleles, even 
though there is little or no evidence for variation in the behavior studied in 
most species to which the theory is applied. The polymorphic equilibria we 
have described above are important because they defiue parameter sets and 
delimit domains of attraction that allow progress to fixation. If the parametric 
conditions for initial increase and final fixation are the same, it does not 
follow that fixation always occurs. 

It is interesting that the evolutionary theory of cooperation, via the 
prisoner’s dilemma is primarily one of final fixation, not initial increase. In 
fact, Axelrod (1981) is clear that with random encounters, the cooperative 
strategy tit-for-tat (TFT) cannot invade a population of egoists. Neverthe- 
less, empiricists have accepted the TFT paradigm in the same way they 
accepted the kin-selection theory regardless of the fact that they apply to 
opposite ends of the phenotype frequency spectrum. 

Axelrod (1981) pointed out that, if intense enough, clustering of co- 
operatives can allow initial increase of TFT in an egoistical world. Feldman 
and Thomas (1987) have developed a dynamic theory for the prisoner’s di- 
lemma framework in which the probability of continuing to play depends on 
the history of the game. Polymorphisms arise naturally in this case and TFT 
may increase when rare. In the analysis, it is shown that clustering is formally 
analogous to population genetic models of mixed self-fertilization and ran- 
dom mating, except that the “fitnesses” are asymmetric. Thus, “relation- 
ship” among cooperatives is ensured and if this is close enough (i.e., the 
propensity to cluster is great enough), initial increase of TFT may occur for 
sets of payoffs that preclude the advance of TFT in the absence of clustering. 

We thank M.K. Uyenoyama for many helpful discussions. This research has been supported 
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APPENDIX 

Loss Modification Model 

We assume a genetic system with two alleles at each of two autosomal loci. 
Locus A determines the probability that a genotype is altruistic. Thus, ge- 
notypes AA, Au, and au are altruistic with probabilities by hl, hZ, and h3. 
The performance of an altruistic act involves a loss in fitness proportional 
to hjkir. The value of ki is determined by the genotype at the B locus. The 
k parameters for genotypes BB, Bb. and bb are k, , kz, and k3, respectively. 
Altruistic interactions will be assumed to be between full sibs. Consequently, 
an individual will experience an increase in fitness equal to p times the 
probability of encountering an altruistic sib. As in our previous kin selection 
models (Uyenoyama et al. 1981; Mueller and Feldman 1985) we assume that 
the loss and gain components of fitness are combined in an additive fashion. 
We will label the gametes AB, Ab, aB, and ub, 1 to 4 respectively. 

Then, the fitnesses of the various two locus genotypes are proportional 
to the quantities given below: 

AA Au 
BB 1 - hlkly + P+II 1 - hzkly + P&3 1 - h3k:; + I.3433 

Bb 1 - hk2y + P&2 1 - hzkzy + P+M 1 - h,kzr + P+34 

bb 1 - hk3y + P$22 1 - h2k3y + @$24 1 - h3k3r + P&4 

where +ii is the conditional probability that genotype ij has an altruistic sib. 
Let the frequencies of the four gametes AB, Ab, uB, and ub be xl, x2, x3, 
and x4 respectively and r, the recombination fraction between the A and B 
locus. We can now write the recursions for the ten two-locus genotypes 
below. 

wgi, = %(I - hrkry) + Pfrr, (Ala) 

&;2 = 2f1i2(1 - hk2y) + Pf12, (Alb) 

ii%;3 = 2i1i3(1 - hzklr) + Pf13, (Ale) 

&;4 = 2-f124b(l - h2k2-d + Pf14, (AId) 

w&2 = ifU - hk3y) + Pf22, (Ale) 

w&3 = 2.f2i3(1 - h2k2$ + ftf23, (AIf) 

w&4 = 2i2-f44(1 - h2k3y) + Pf24, (Ak) 

m3 = f:U - h3kly) + Pf33, Wh) 

&;4 = 2f3%(l - h,kzr) + Pf34, (Ali) 

%& = if(l - h&y) + Pfu, (Alj) 
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where 

i1 = x1 + rLl2, 

iz = x2 - rLl2, 

X3 = x3 - rLi2, 

R4 = x4 + rLl2, 

L = g23 - g14, 

and w is a normalizer equal to the sum of the right hand sides of equations 

(Al). 
The joint probability of being genotype ij and having an altruistic sib is 

denoted by fij. Calculation of the various fijs is done in a manner identical 
to that described in Mueller and Feldman (1985). Each fij expression con- 
tains terms multiplied by hI , hz, and h,. For simplicity Table Al contains 
the fij expressions grouped as coefficients of h, , hZ and h3. 

We now proceed with the analysis of this model. We are particularly 
interested in studying the evolution of the loss parameter (kis) from various 
initial equilibria. First, we assume the population is fixed for the A and B 
alleles (corner equilibrium). We then find conditions that guarantee stability 
of the corner equilibrium. We also examine the initial increase conditions 
for alleles at the B locus when the A locus is at a stable polymorphism. As 
mentioned previously, there are two kinds of single locus equilibria: viability 
analogous and structural. We consider each of these equilibria in our 
analysis. 

Stability of a Corner Equilibrium 

We assume the population is initially fixed for the ABIAB genotype. Our 
problem is to find conditions under which the corner remains stable in the 
presence of a small number of ab haplotypes. The analysis reduces to ex- 
amining the linear dynamics of the three rare genotypes, ABlab, ABIaB, and 
ABIAb in the neighborhood of the equilibrium point gll = 1. If g = (g12, 
g13. g14jT, then the linear dynamics are given by g’ = Ag, where, 

A=1 

i 

1 - kzhy + Ph, 0, 

T 
0, 1 - k,hy + P(h, + W2, 
0, 0, 

r(l - k2hly) + pr(h, + h2)/2 

r(l - klhu) + Pr(hl + hJ2 
(1 - r)(l - k2hzy) + p(1 - r)(h, + hJ2 

and T = 1 + ph, - k,h,y. 
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Table Al. Joint Probabilities, fj, of Being Genotype ij and Having an AItrui@ic Sib. Each fu is the Sum of 
Three Term Given Below, Which Are Multiplied by ks, hi, and hz, Respectively. The Following 
Identities Are Used Throughout: L = gu - g14, V = gl,(l - r) + gur, M = g,,r + g-(1 - r). 

hl - terms 

fll = x1(2gll + g12)/2 + g&l3 + %1,)/16 + rL(4gll + &I2 + gl3)/8 + V2/16 

f22 = x2(2&2 + g&2 + g&24 + 2&/16 - rL(4gzt + 2g12 + gd8 + M2/16 

f33 = g,3(g,3 + 2g23Y16 - g,,rL/8 + M2/16 

f44 = g&24 + 2gd16 + g24rLl8 + V2/16 

f,z = x,(%,2 + ad/2 + .d%,, + gd2 + hgz + g,3m + g,mJ8 

+ rL[4(g22 - g,,) + g24 - g,31/8 + VM/8 

fn = kn + gzsM%,, + gd4 + g&w + g,4 + gd8 - rL@g,, + gd4 + MVB 

f24 = (g,4 + g24)@g22 + g,2)/4 + g24(g,4 + g23 + g24P + rL(2g2z + 8,2)/d + MV/8 

f34 = ha4 + mm4 + g23gd8 + r&z,3 - ad/8 + MV/8 

f14 = (a4 + g&kll + gd4 + km,4 + g13gz.i + g,e.d/8 + rL@g,, + 2g,, + gn + gd8 + V2/8 

f23 = (g,3 + g23Wg22 + g,2)/4 + h3g23 + gt3g24 + g23gd8 - rU4g22 + 2g,2 + g13 + g&/8 + M2/8 

h7 - terms 

fll = km + gl4)(%], + gr2)/4 + g,&g14 + g,,)/8 + rL(2g,, + g,z + g,,)/4) + V2/8 

f22 = (g23 + g24Ng22 + g,2)/4 + g24Vg23 + gad/8 - rL(2gz + gn + g&/4 + M2/8 

f33 = (g,3 + g23Mg33 + g34)/4 + g,3&23 + g,3)/8 - rU2g33 + g,3 + g34)/4 + M2/8 

f44 = (g,4 + g24Mg44 + g34)/4 + g24&,4 + g24Y8 + rLW4 + g24 + g34Y4 + V2/8 

f,2 = g,3x2/2 + g24(x, - g13/2)/2 + g23(2g,, + g,2)/4 + g,4(2g22 + g,2)/4 

+ rLWg22 - g,,) + g24 - g,31/4 + MV/4 

fl3 = g33x, + x3eg1, + g,:n + g13cg13 + g14 + g23 + g34Y4 + g34(2g,, + g,2 + g,4)/4 

+ a2g33 + g34 - g,2 - 2g,,)/4 + MVl4 

f24 = g22h + x2@g44 + g34)/2 + g24(g,2 + g,4 + g23 + g24)/4 + g,2(2g44 + g,, + 934)/b 

+ rLWg22 - g4.d + g,2 - g341/4 + MV/4 

f34 = g,,x4/2 + g24cx3 - g,3/2)/2 + g23(2g44 + 83,114 + g14(2g33 + 83,114 

+ rLUg33 - g44) + g,3 - g241/4 + MV/4 

f14 = x,eg44 + g34n + x4(2g,1 + g,2)/2 + (g,3g,4 + g13g24 + g,4g24)/4 

+ ru2g,, + 2g44 + g,2 + g13 + g24 + g34Y4 + V2/4 

f23 = x2(2g33 + 834)/z + x3(2g22 + g,2)/2 + (g13g23 + g13g24 + g23g24@ 

- W2g22 + 2g33 + g,2 + g13 + g24 + g34Y4 + M2/4 



Models of Kin Selection 235 

Table Al. (Continued) 

hs - terms 

fl, = gdgn + 2gd16 + g,,rL/8 + V%6 

f~ = g&24 + 2gd16 - g2d.18 + M%6 

f33 = xd2g33 + g34)/2 + g&l3 + 2gd16 - rL(4m + 2834 + gnY8 + W/16 

fu = x&gti + ml/2 + g&24 + 2gd16 + rL(4m + 2834 + gd8 + V*/16 

f12 = (am3 + gng24 + mm)/8 + rL(m - g&8 + MVh3 

f13 = (gn + g14)(2m + g&4 + g&n + g14 + g&/8 + r-U%33 + g3J4 + MV/8 

f24 = k23 + &4)(%4 + g34)/4 + &?24(g14 + gz3 + g,4Y8 - rL&, + g34)/4 + kfV/8 

f34 = x4(%33 + g34Y2 + x3Cku + g34)/2 + klsgl4 + g13g24 + gz3gz4Y8 

+ rLW(g33 - g.+t) + gl3 - gd8 + MV/8 

f14 = (813 + g14)(2g~ + g&4 + km4 + gl.m4 + mm)/8 + rL(4g.u + 2g34 + g13 + g&/8 + V2/8 

f23 = h3 + &4)(&33 + &?34# + (&!13&?23 + tT13g24 + gz3gz4M - rL(‘k33 + &?34 + $?I3 + ad8 + h4*/8 

The matrix A has three unique eigenvalues: 

x 
1 

= 1 - kzhy + W, 
1 + ph, - klh1-y ’ 

x 
2 

= 1 - k,hzy + P(h, + hd2 
1 + f3hl - klhlr ’ 

x 

3 
= (1 - r)(l - kzh,r) + 131 - r)(h, + h&2 

1 + Phi - hhy 

The AB fixation is stable if X1, X2, X3 < 1. These conditions reduce to 

k2 > kl, (A2a) 

(h2 - h,)(P/2 - kly) < 0, (A2b) 

y(klhl - kzhd + P(hz - hd2 - rP(1 - k&2$ 

+ P(hl + h2)1/2 < 0. (A2c) 

If inequalities (A2a) and (A2b) are satisfied, then (A2c) is always true. Since 
conditions (A2a) and (A2b) are also the conditions for the protection of single 
locus monomorphism, we can conclude that if both the a and b alleles fail 
to increase at their separate loci, they will also fail to increase in the linked 
two locus systems. 

Stability at the A Locus; Increase of Loss Alleles Linked to a 
Polymorphism 

We now consider a population that is at a stable viability analogous equi- 
librium and fixed for the B allele. Consequently, i’l = (h2 - h3)l(2h2 - h, 
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- h3). To study the conditions necessary for the initial increase of b alleles, 
we need to examine the dynamics of the four rare genotypes ABIAb, ABI 
ab, AbIaB, and aBlab in the vicinity of the viability analogous equilibrium. 
If g = (g,,, g14, g,,, g34)T, then the dynamics of the rate genotypes may be 
summarized as g’ = Bg. The largest eigenvalue of B is 

x 
1 

= 1 + @ - k2y)(hf - h1h3)@h2 - hl - h3) 

1 + (l.3 - k*$(h; - hlh3)/(2h* - h, - h,) . 

For Ai to be greater than 1, we must have ki > kZ. Thus, b alleles can get 
into the population only if the loss suffered by the Bb heterozygotes is less 
than the loss BB homozygotes experience. 

The previous result is true when the A locus is at a viability analogous 
equilibrium. We now derive initial increase conditions assuming the A locus 
is at the structural equilibrium. The same matrix, B, determines stability in 
this problem. The difference between the two problems is that the values 
of .?i and gi3 are not the same. In particular there is no simple expression 
for ~?i, since it is the solution of a quadratic equation (Uyenoyama and Feld- 
man, 1981). Finding the largest eigenvalue of B at the structural equilibrium 
has proven to be quite difficult. We can make progress for the case of r = 
0. With absolute linkage, the matrix B breaks into two 2 x 2 matrices. 

The first 2 x 2 matrix for the Y = 0 case is given below. 

(1 - kzhzY)(I i,) 
t 

(A3) 

where T = 1 + (p - k,y)[[ifh, + 2,?,(1 - ii)h~ + (1 - i1)*hl. After 
some algebra, we find that the largest eigenvalue of (A3) is less than 
1 if 

i,(l - i1)P$k,(hlh3 - h;) + k2(h2 - hAh2 - hdl - k&i(l - k&d 

- kl9hG.l + h3(1 - .f,>lKP - kly) + k&l 644) 

- T[P(hl - h) - y(k&, - k,h) - yk& > 0, 

where 
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By itself, this inequality is not very informative. We can, however, 
obtain some simple results by noticing the following features of (A4). The 
inequality (A4) is a linear function of kZ. Thus, if we can determine the 
value of this function for two values of kZ we may be able to derive a simple 
relationship between the magnitude of the largest eigenvalue and kz. We 
first start with k2 = kl = k. Again, after some algebra we find that the 
expression on the left of equation (A4) is equal to 

(h, - h){ -(ky)‘[hlP, + h3(1 - 2,) + h] 

+ pky[h,i, + h3(1 - a,) + 2h] - p2h - l3 + 2ky). (AS) 

From Uyenoyama and Feldman (1981) we know that the allele frequencies 
at the structural equilibrium satisfy the following quadratic equation: 

x:[(P - r)2(2h2 - h, - h3)l + x,[(P - Y>~(~I + h3 - 2hd 

+ (hl - h,)(P - Y)@Y - PII + (2~ - P)U + h3(P - r>l = 0. 646) 

If we note that y in (A6) is equal to ky in our notation, equation (A6) can 
be rearranged to yield 

-(ky)*[h,_fl + hs(l - a,> + h] + pky[h$, + h3(1 - a,) + 2h] 

- P’Til - p + 2ky = 0. 

Thus, (AS) is equal to 0 when k2 = k, . We next set k2 = 2k, = 2k in 
the left side of equation (A4). Rearranging this expression yields 

kyhhz(f3 - ky) + h(l - &)hb@ 

+ itky[h,hz-ft(P - kr) 

If p > ky, then each element of (A7) 

- ky) + k$&( 1 - ky) 

+ (1 - .t,)ph;] + 2kyhzf, 

+ (1 - idkyhJ(2 - hlkyt,). (A7) 

is positive, hence the whole expression 
is positive. We can now conclude that for the inequality (A4) to hold requires 
k2 > kl . Analysis of the second 2 x 2 matrix from B yields the same result. 
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